Expressão algébrica
Expressões algébricas são expressões matemáticas que apresentam letras e podem conter números, são também denominadas expressões literais. As letras constituem a parte variável das expressões, pois elas podem assumir qualquer valor numérico. No passado as letras foram pouco utilizadas na representação de números desconhecidos, atualmente as letras associadas a números constituem a base da álgebra e contribui de forma eficiente na resolução de várias situações matemáticas. Veja alguns exemplos de expressões algébricas:
2x – 5
3a + 2y
x² + 7x
5 + x – (5x – 2)
10y – 10x
a² – 2ab + b²
As expressões algébricas podem ser utilizadas para representar situações problemas, como as propostas a seguir:
1 – Determine a expressão que representa o perímetro das seguintes figuras:
Perímetro: soma dos lados de qualquer polígono.
4x + 1 + 2x + 4x + 1 + 2x
12x + 2
2x + 6 + 3x – 2 + x + 8
6x + 12
2 – O dobro de um número adicionado a 20: 2x + 20
3 – A diferença entre x e y: x – y
4 – O triplo de um número qualquer subtraído do quádruplo do número: 3x – 4x
5 – Represente algebricamente a área do retângulo a seguir:
2x * (3x+5)
6x² + 10x
O uso das expressões algébricas
No cotidiano, muitas vezes usamos expressões sem perceber que as mesmas representam expressões algébricas ou numéricas.
Numa papelaria, quando calculamos o preço de um caderno somado ao preço de duas canetas, usamos expressões como 1x+2y, onde x representa o preço do caderno e y o preço de cada caneta.
Num colégio, ao comprar um lanche, somamos o preço de um refrigerante com o preço de um salgado, usando expressões do tipo 1x+1y onde x representa o preço do salgado e y o preço do refrigerante.
Usamos a subtração para saber o valor do troco. Por exemplo, se V é o valor total de dinheiro disponível e T é o valor do troco, então temos uma expressão algébrica do tipo V-(1x+1y)=T.
As expressões algébricas são encontradas muitas vezes em fórmulas matemáticas. Por exemplo, no cálculo de áreas de retângulos, triângulos e outras figuras planas.
Expressão algébrica |
Objeto matemático |
Figura |
A = b x h |
Área do retângulo |
|
A = b x h / 2 |
Área do triângulo |
|
P = 4 a |
Perímetro do quadrado |
Elementos históricos
Na Antiguidade, as letras foram pouco usadas na representação de números e relações. De acordo com fontes históricas, os gregos Euclides e Aristóteles (322-384 a.c), usaram as letras para representar números. A partir do século XIII o matemático italiano Leonardo de Pisa (Fibonacci), que escreveu o livro sobre Liber Abaci (o livro do ábaco) sobre a arte de calcular, observamos alguns cálculos algébricos.
O grande uso de letras para resumir mais racionalmente o cálculo algébrico passou a ser estudado pelo matemático alemão Stifel (1486-1567),e pelo matemático italiano Germano (1501-1576) e Bombelli (autor de Álgebra publicada em 1572), porém, foi com o matemático francês François Viéte (1540-1603), que introduziu o uso ordenado de letras nas analogias matemáticas, quando desenvolveu o estudo do cálculo algébrico.
Expressões Numéricas
São expressões matemáticas que envolvem operações com números. Por exemplo:
a = 7+5+4
b = 5+20-87
c = (6+8)-10
d = (5×4)+15
Expressões algébricas
São expressões matemáticas que apresentam letras e podem conter números. São também denominadas expressões literais. Por exemplo:
A = 2a+7b
B = (3c+4)-5
C = 23c+4
As letras nas expressões são chamadas variáveis o que significa que o valor de cada letra pode ser substituída por um valor numérico.
Prioridade das operações numa expressão algébrica
Nas operações em uma expressão algébrica, devemos obedecer a seguinte ordem:
Observações quanto à prioridade:
Exemplos:
Aqui A é a variável da expressão, 5 é o valor numérico da variável e 20 é o valor numérico da expressão indicada por P. Observe que ao mudar o valor de A para 9, teremos:
A = 2.9 + 10 = 18 + 10 = 28
Se A=9, o valor numérico de P=2A+10 é igual a 28.
Se A=5 e B=7, o valor numérico de X=4A+2+B-7, muda para 22.
Se C=-2 e D=1, o valor numérico de Y=18-C+9+D+8C, é 14.
Conclusão: O valor numérico de uma expressão algébrica é o valor obtido na expressão quando substituímos a variável por um valor numérico.
Exemplos:
Observação: Mudando o valor do lado para L=8cm, o valor da área mudará para A=8×8=64cm².
Monômios e polinômios
São expressões matemáticas especiais envolvendo valores numéricos e literais, onde podem aparecer somente operações de adição, subtração ou multiplicação. Os principais tipos são apresentados na tabela:
Nome |
No.termos |
Exemplo |
monômio |
um |
m(x,y) = 3 xy |
binômio |
dois |
b(x,y) = 6 x²y - 7y |
trinômio |
três |
f(x) = a x² + bx + c |
polinômio |
vários |
p(x)=aoxn+a1xn-1+a2xn-2+...+an-1x+an |
Identificação das expressões algébricas
Com muita frequência, as expressões algébricas aparecem na forma:
3x²y
onde se observa que ela depende das variáveis literais x e y, mas é importante identificá-las com nomes como:
p(x,y) = 3x²y
para deixar claro que esta é uma expressão algébrica que depende das variáveis x e y.
Esta forma de notação é muito útil e nos leva ao conceito de função de várias variáveis que é um dos conceitos mais importantes da Matemática.
Valor numérico de uma expressão algébrica identificada
É o valor obtido para a expressão, ao substituir as variáveis literais por valores numéricos.
Exemplo: Tomando p(x,y)=3x²y, então para x=7 e y=2 temos que:
p(7,2) = 3 × 7² × 2 = 294
Se alterarmos os valores de x e de y para x=-1 e y=5, teremos outro valor numérico:
p(-1,5) = 3 × (-1)² × 5 = 3 × 5 = 15
mas dependendo da mudança de x e de y, poderíamos ter o mesmo valor numérico que antes. Se x=-7 e y=2, teremos:
p(7,2) = 3 × (-7)² × 2 = 294
A regra dos sinais (multiplicação ou divisão)
(+1) x (+1) = +1 (+1) ÷ (+1) = +1
(+1) x (-1) = -1 (+1) ÷ (-1) = -1
(-1) x (+1) = -1 (-1) ÷ (+1) = -1
(-1) x (-1) = +1 (-1) ÷ (-1) = +1
Regras de potenciação
Para todos os números reais x e y diferentes de zero, e, m e n números inteiros, tem-se que:
Propriedades |
Alguns exemplos |
xº=1 (x não nulo) |
5º = 1 |
xm xn = xm+n |
5².54 = 56 |
xm ym = (xy)m |
5² 3² = 15² |
xm ÷ xn = xm-n |
520 ÷ 54 = 516 |
xm ÷ ym = (x/y)m |
5² ÷ 3² = (5/3)² |
(xm)n = xmn |
(53)² = 125² = 15625 = 56 |
xm÷n = (xm)1/n |
53÷2 = (53)1/2 = 1251/2 |
x-m = 1 ÷ xm |
5-3 = 1 ÷ 53 = 1/125 |
x-m/n = 1 ÷ (xm)1/n |
5-3/2 = 1 ÷ (53)1/2= 1 ÷ (125)1/2 |
Eliminação de parênteses em Monômios
Para eliminar os parênteses em uma expressão algébrica, deve-se multiplicar o sinal que está fora (e antes) dos parênteses pelo sinal que está dentro (e antes) dos parênteses com o uso da regra dos sinais. Se o monômio não tem sinal, o sinal é o positivo. Se o monômio tem o sinal +, o sinal é o positivo.
Exemplos:
A = -(4x)+(-7x) = -4x-7x = -11x
B = -(4x)+(+7x) = -4x+7x = 3x
C = +(4x)+(-7x) = 4x-7x = - 3x
D = +(4x)+(+7x) = 4x+7x = 11x
Operações com expressões algébricas de Monômios
Para somar ou subtrair de monômios, devemos primeiramente eliminar os parênteses e depois realizar as operações.
Exemplos:
Para multiplicar monômios, deve-se primeiramente multiplicar os valores numéricos observando com muito cuidado a regra de multiplicação dos sinais, multiplicar as potências literais de mesma base e escrever a resposta de uma forma simplificada:
Exemplos:
Para dividir monômios, deve-se primeiramente dividir os valores numéricos observando com muito cuidado a regra de divisão dos sinais, dividir as potências literais de mesma base e escrever a resposta de uma forma simplificada:
Exemplos:
Para realizar a potenciação de um monômio, deve-se primeiramente realizar a potenciação do valor numérico levando em consideração o sinal, tomar as potências literais e escrever a resposta de uma forma simplificada:
Exemplos:
Alguns Produtos notáveis
Sabemos que x²=x.x, y²=y.y, mas não é verdade que
x² + y² = (x+y)²
a menos que um dos dois termos seja nulo. Este é um erro muito comum, mas o correto é:
(x+y)² = x² + 2xy + y²
Isto significa que o quadrado da soma de dois números sem sempre é igual à soma dos quadrados desses números.
Existe um algoritmo matemático que permite obter o quadrado da soma de x e y, e este algoritmo é semelhante àquele que permite obter o quadrado de um número com dois dígitos. Por exemplo, o número 13 pode ser decomposto em 10+3:
|
Compare |
|
Assim temos que o quadrado da soma de dois termos x e y, é a soma do quadrado do primeiro termo com o quadrado do segundo termo e com o dobro do produto do primeiro termo pelo segundo termo. Em resumo:
(x+y)² = x² + 2xy + y²
Exemplos:
(x+8)² = x²+2.x.8+8² = x²+16x+64
(3k+y)² = (3k)²+2.3k.y+y² = 9k²+6ky+y²
(1+x/5)² = 1+ 2x/5 +x²/25
Exercícios: Desenvolver as expressões:
(a+8)² =
(4y+2)² =
(9k/8 +3)² =
Pensando um pouco:
Quadrado da diferença de dois termos
Como um caso particular da situação anterior, o quadrado da diferença de x e y é igual ao quadrado de x somado com o quadrado de y menos duas vezes xy. Resumindo:
(x-y)² = x² - 2xy + y²
Exemplos:
(x-4)² = x²-2.x.4+4² = x²-8x+16
(9-k)² = 9²-2.9.k+k² = 81-18k+k²
(2/y -x)² = (2/y)²-2.(2/y).x+x²
Exercícios: Complete o que falta.
(5x-9)² =[ ]
(k-6s)² =[ ]
(p-[ ])² = p²-10p+[ ]
Produto da soma pela diferença de dois termos
Vamos utilizar o mesmo algoritmo já usado para o produto da soma de dois termos.
|
Compare |
|
Em geral, o produto da soma de x e y pela diferença entre x e y é igual ao quadrado de x menos o quadrado de y.
(x+y)(x-y) = x² - y²
Exemplos:
(x+2)(x-2) = x²-2x+2x-4 = x²-4
(g-8)(g+8) = g²-8g+8g-64 = g²-64
(k-20)(k+20) = k²-400
(9-z)(9+z) = 81-z²
Exercícios: Complete as expressões:
(6-m)(6+m) =
(b+6)(b-6) =
(6+b)(b-6) =
(6+b)(6-b) =
(100-u)(100+u) =
(u-100)(100+u) =
EXERCÍCIOS
1) Reduza os termos semelhantes nas seguintes expressões algébricas:
a) 6x + (2x – 4) – 2= (R: 8x -6)
b) 7y -8 – (5y – 3) = (R: 2y -5)
c) 4x – ( -3X + 9 – 2X) = ( R: 9x – 9)
d) 3x – (-2x + 5) – 8x + 9 = (R: -3x + 4)
e) 4x – 3 + (2x + 1) = (R: 6x -2)
f) (x + y) – (x + 2y) = (R: -y)
g) ( 3x – 2y) + (7x + y) = (R: 10x – 19)
h) –(8a + 4 – ( 3a + 2)= (R: -11a -6)
2) Reduza os termos semelhantes nas seguintes expressões algébricas
a) 5a + (3a -2) – (10a – 8) = (R: -2a + 6)
b) 6x + (5x -7) – (20 + 3x )= (R: 8x -27)
c) (x + y + z) + x – (3y + z) = ( R: 2x – 2y)
d) (m + 2n ) – ( r – 2n) – ( n+ r) = (R: m + 3n – 2r)
e) – (6y + 4x ) + ( 3y – 4x ) – (-2x + 3y) = (R: -6y – 6x)
3) Reduza os termos semelhantes nas seguintes expressões algébricas
a) 6x² - [ 4x² + (3x – 5) + x]= (R: 2x²- 4x + 5)
b) 3X + { 2Y – [ 5X – (Y + X)]} = (R: -1x + 3y)
c) – 3x + [ x² - ( 4x² - x ) + 5x] = (R: -3x² + 3x )
d) Xy – [ 2x + (3xy – 4x ) + 7x] = (R: 2xy – 5x)
e) 8a – [ ( a + 2m) – ( 3a – 3m)] = (R: 10a – 5m)
f) a– (b – c) + [ 2a + (3b + c)] = (R: 3a + 2b + 2c)
g) –[x + (7 – x) – (5 + 2x)] = (R: -2x -2)
h) { 9x – [ 4x – (x – y)- 5y] + y} = (R: 6x + 5y)
i) (3a + 2m ) – [ ( a – 2m) – (6a + 2m)] = (R: 8a + 6m)
j) 7x³- { 3x² - x – [ 2x – { 5x³ - 6x² ) – 4x ]} = (R: 2x³ + 3x²- 1x)
k) 2y – { 3y + [4y – (y – 2x) + 3x ] – 4x } + 2x = (R: 11y – 4x)
l) 8y + { 4y – [ 6x – y- (4x – 3y) – y ] – 2x } = (R: 6x + 4y)
m) 4x – { 3x + [ 4x – 3y – (6x – 5y ) – 3x ] – 6y}
n) 3x – { 3x – [3x – (3x –y) – y ] – y} - y
4) Reduza os termos semelhantes das expressões algébricas
a) -2n – (n – 8) + 1 = (R: -3n + 9)
b) 5 – ( 2A – 5 ) + a = (R: -a + 10)
c) 3x + ( -4 – 6x) + 9 = (R: -3x + 5)
d) 8y – 8 – ( -3y + 5) = (R: 11y – 13)
e) a – [ n + ( a + 3) ] = (R: -n -3)
f) 5 + [ x – (3 – x)] = (R: 2x + 2)
g) x² - [ x – (5 - x²)] = (R: -x + 5)
h) 5x – y – [ x – ( x – y)] = (R: 5x – 2y)
5) Reduza os termos semelhantes das expressões algébricas
a) 2x + ( 2x + y) – (3x – y) + 9x = (R: 10x + 2y)
b) 5a – { 5a – [ 5a – (5a – m) – m] – m } – m = (R: 0)
c) – { 7a – m – [ 4m – (n – m + 3a) – 4a] + n } = (R : -14a + 6m – 2n)
d) 5xy – { - ( 2xy + 5x) + [ 3Y – (-XY + X + 3XY)]} = (R: 9Xy + 6X -3Y)
e) – {x – 2y + y – [ 3x + 5xy + 6y – (x –y) + 8 ]} = (R: x + 8y + 5xy + 8)