PROBABILIDADES
O estudo da probabilidade vem da necessidade de em certas situações, prevermos a possibilidade de ocorrência de determinados fatos.
Ao começarmos o estudo da probabilidade, normalmente a primeira ideia que nos vem à mente é a da sua utilização em jogos, mas podemos utilizá-lo em muitas outras áreas. Um bom exemplo é na área comercial, onde um site de comércio eletrônico pode dela se utilizar, para prever a possibilidade de fraude por parte de um possível comprador.
Para iniciarmos o estudo da probabilidade, vamos a seguir definir alguns conceitos importantes sobre a matéria.
Se lançarmos uma moeda ao chão para observarmos a face que ficou para cima, o resultado é imprevisível, pois tanto pode dar cara, quanto pode dar coroa.
Se ao invés de uma moeda, o objeto a ser lançado for um dado, o resultado será mais imprevisível ainda, pois aumentamos o número de possibilidades de resultado.
A experimentos como estes, ocorrendo nas mesmas condições ou em condições semelhantes, que podem apresentar resultados diferentes a cada ocorrência, damos o nome de experimentos aleatórios.
Ao lançarmos uma moeda não sabemos qual será a face que ficará para cima, no entanto podemos afirmar com toda certeza que ou será cara, ou será coroa, pois uma moeda só possui estas duas faces. Neste exemplo, ao conjunto { cara, coroa } damos o nome de espaço amostral, pois ele é o conjunto de todos os resultados possíveis de ocorrer neste experimento.
Representamos um espaço amostral, ou espaço amostral universal como também é chamado, pela letra S. No caso da moeda representamos o seu espaço amostral por:
S = { cara, coroa }
Se novamente ao invés de uma moeda, o objeto a ser lançado for um dado, o espaço amostral será:
S = { 1, 2, 3, 4, 5, 6 }
Quando lançamos um dado ou uma moeda, chamamos a ocorrência deste fato de evento. Qualquer subconjunto de um espaço amostral é um evento.
Em relação ao espaço amostral do lançamento de um dado, veja o conjunto a seguir:
A = { 2, 3, 5 }
Note que ( A está contido em S, A é um subconjunto de S ). O conjunto A é a representação do evento do lançamento de um dado, quando temos a face para cima igual a um número primo.
Podemos classificar os eventos por vários tipos. Vejamos alguns deles:
Classificamos assim os eventos que são formados por um único elemento do espaço amostral.
A = { 5 } é a representação de um evento simples do lançamento de um dado cuja face para cima é divisível por5. Nenhuma das outras possibilidades são divisíveis por 5.
Ao lançarmos um dado é certo que a face que ficará para cima, terá um número divisor de 720. Este é um evento certo, pois 720 = 6! = 6 . 5 . 4 . 3 . 2 . 1, obviamente qualquer um dos números da face de um dado é um divisor de 720, pois 720 é o produto de todos eles.
O conjunto A = { 2, 3, 5, 6, 4, 1 } representa um evento certo pois ele possui todos os elementos do espaço amostral S = { 1, 2, 3, 4, 5, 6 }.
No lançamento conjunto de dois dados qual é a possibilidade de a soma dos números contidos nas duas faces para cima, ser igual a 15?
Este é um evento impossível, pois o valor máximo que podemos obter é igual a doze. Podemos representá-lo por , ou ainda por A = {}.
Seja A = { 1, 3 } o evento de ocorrência da face superior no lançamento de um dado, ímpar e menor ou igual a 3e B = { 3, 5 }, o evento de ocorrência da face superior, ímpar e maior ou igual a 3, então C = { 1, 3, 5 }representa o evento de ocorrência da face superior ímpar, que é a união dos conjuntos A e B, ou seja, .
Note que o evento C contém todos os elementos de A e B.
Seja A = { 2, 4 } o evento de ocorrência da face superior no lançamento de um dado, par e menor ou igual a 4 eB = { 4, 6 }, o evento de ocorrência da face superior, par e maior ou igual a 4, então C = { 4 } representa o evento de ocorrência da face superior par, que é a intersecção dos conjuntos A e B, ou seja, .
Veja que o evento C contém apenas os elementos comuns a A e B.
Seja A = { 1, 2, 3, 6 } o evento de ocorrência da face superior no lançamento de um dado, um número divisor de6 e B = { 5 }, o evento de ocorrência da face superior, um divisor de 5, os eventos A e B são mutuamente exclusivos, pois , isto é, os eventos não possuem elementos em comum.
Seja A = { 1, 3, 5 } o evento de ocorrência da face superior no lançamento de um dado, um número ímpar, o seuevento complementar é A = { 2, 4, 6 } o evento de ocorrência da face superior no lançamento de um dado, um número par.
Os elementos de A são todos os elementos do espaço amostral S que não estão contidos em A, então temos queA = S - A e ainda que S = A + A.
Os três irmãos Pedro, João e Luís foram brincar na rua. Supondo-se que as condições de retorno para casa são as mesmas para cada um deles, qual é a probabilidade de Luís voltar para casa primeiro?
Como 3 é o número total de irmãos, então Luís tem 1 chance em 3 de voltar para casa primeiro, por isto aprobabilidade de Luís voltar para casa antes dos seus irmãos é igual a 1/3.
A probabilidade de um evento ocorrer (Luís voltar para casa primeiro) considerando-se um espaço amostral(Pedro, João e Luís) é igual a razão do número de elementos do evento (1, apenas Luís) para o número de elementos do espaço amostral (3, o número de irmãos que foram brincar na rua), desde que espaço o amostral seja um conjunto equiprovável, ou seja, todos os seus elementos tenham a mesma possibilidade de ocorrer (as condições de retorno para casa são as mesmas para os três irmãos).
Sendo E um evento, n(E) o seu número de elementos, S o espaço amostral não vazio e n(S) a quantidade de elementos do mesmo, temos que a probabilidade de E ocorrer é igual a:
, sendo n(S)≠0.
A probabilidade é um número entre zero e um, inclusive, o que significa que no mínimo não a nenhuma hipótese do evento acontecer e no máximo o evento sempre ocorrerá:
0 ≤ P(E) ≤ 1
Normalmente representamos probabilidades através de frações, mas também podemos representá-las por números decimais, ou até mesmo por porcentagens.
Um dado é lançado. Qual é a probabilidade de obtermos um número divisor de 6?
Como vimos acima, o espaço amostral do lançamento de um dado é:
S = { 1, 2, 3, 4, 5, 6 }
Como estamos interessados apenas nos resultados divisores de 6, o evento E é representado por:
E = { 1, 2, 3, 6 }
Então n(E) = 4 e n(S) = 6, portanto:
Podemos também apresentar o resultado na forma de uma porcentagem:
A probabilidade de se obter um número divisor de 6 é 2/3 ou 66,67%.
EXERCICIOS
01 - (Cesgranrio) Uma urna contém 4 bolas brancas e 5 bolas pretas. Duas bolas, escolhidas ao acaso, são sacadas dessa urna, sucessivamente e sem reposição. A probabilidade de que ambas sejam brancas vale:
a) 1/6 b) 2/9 c) 4/9 d) 16/81 e) 20/81
02 - (FEI) Uma caixa contém 3 bolas verdes, 4 bolas amarelas e 2 bolas pretas. Duas bolas são retiradas ao acaso e sem reposição. A probabilidade de ambas serem da mesma cor é:
a) 13/72 b) 1/18 c) 5/18 d) 1/9 e) 1/4
03 - (Mackenzie) Uma caixa contém 2 bolas brancas, 3 vermelhas e 4 pretas. Retiradas, simultaneamente, três bolas, a probabilidade de pelo menos uma ser branca é:
a) 1/3 b) 7/12 c) 2/9 d) 2/7 e) 5/12
04 - (Mackenzie) No lançamento de 4 moedas "honestas", a probabilidade de ocorrerem duas caras e duas coroas é:
a) 1/16 b) 3/16 c) 1/4 d) 3/8 e) 1/2
05 - (PUC – Rio) Um casal pretende ter 3 filhos. Qual a probabilidade de que todos os três filhos sejam do mesmo sexo?
a) 1/8 b) 1/6 c) 1/3 d) 1/4 e) 2/3
06 - (Unesp) Lançando-se simultaneamente dois dados não viciados, a probabilidade de que suas faces superiores exibam soma igual a 7 ou 9 é:
a) 1/6 b) 4/9 c) 2/11 d) 5/18 e) 3/7
07 - (UFF) Em uma bandeja há dez pastéis dos quais três são de carne, três de queijo e quatro de camarão. Se Fabiana retirar, aleatoriamente e sem reposição, dois pastéis desta bandeja, a probabilidade de os dois pastéis retirados serem de camarão é:
a) 3/25 b) 4/25 c) 2/15 d) 2/5 e) 4/5
08 - (UFRS) Em um jogo, dentre dez fichas numeradas com números distintos de 1 a 10, duas fichas são distribuídas ao jogador, que ganhará um prêmio se tiver recebido fichas com dois números consecutivos. A probabilidade de ganhar o prêmio neste jogo é de
a) 14%. b) 16%. c) 20%. d) 25%. e) 33%.
09 - (UEPG 2008) Uma urna contém 20 fichas, numeradas de 1 a 20. Assim, assinale o que for correto.
01. Retirando-se uma ficha ao acaso, a probabilidade de ela ser de um número par ou múltiplo de 5 é de 60%.
02. Retirando-se duas fichas ao acaso, sem reposição, a probabilidade de que o produto dos números sorteados seja ímpar é 9/38 .
03. Retirando-se uma ficha ao acaso, a probabilidade de que seja um número múltiplo de 3 é de 30%.
04. Retirando-se duas fichas ao acaso, sem reposição, a probabilidade de que ambos os números sejam pares é de 9/38 .
10 - (Unirio) As probabilidades de três jogadores marcarem um gol cobrando um pênalti são, respectivamente, 1/2, 2/5 e 5/6. Se cada um bater um único pênalti, a probabilidade de todos errarem é igual a:
a) 3% b) 5% c) 17% d) 20% e) 25%
11 - (UFRGS 2007) Uma caixa contém bolas azuis, brancas e amarelas, indistinguíveis a não ser pela cor. Na caixa existem 20 bolas brancas e 18 bolas azuis. Retirando-se ao acaso uma bola da caixa, a probabilidade de ela ser amarela é 1/3. Então o número de bolas amarelas é:
a)18 b)19 c)20 d)21 e)22
12 - (UFPR 2010) Em uma população de aves, a probabilidade de um animal estar doente é 1/25. Quando uma ave está doente, a probabilidade de ser devorada por predadores é 1/4, e, quando não está doente, a probabilidade de ser devorada por predadores é 1/40. Portanto, a probabilidade de uma ave dessa população, escolhida aleatoriamente, ser devorada por predadores é de:
a)1,0%. b) 2,4%. c) 4,0%. d) 3,4%. e) 2,5%.
13 - (ITA) Retiram-se 3 bolas de uma urna que contém 4 bolas verdes, 5 bolas azuis e 7 bolas brancas. Se P• é a probabilidade de não sair bola azul e P‚ é a probabilidade de todas as bolas saírem com a mesma cor, então a alternativa que mais se aproxima de P• + P‚ é
a) 0,21. b) 0,25. c) 0,28 d) 0,35. e) 0,40.
14 - (ITA) Uma caixa branca contém 5 bolas verdes e 3 azuis, e uma caixa preta contém 3 bolas verdes e 2 azuis. Pretende-se retirar uma bola de uma das caixas. Para tanto, 2 dados são atirados. Se a soma resultante dos dois dados for menor que 4, retira-se uma bola da caixa branca. Nos demais casos, retira-se uma bola da caixa preta. Qual é a probabilidade de se retirar uma bola verde?
GABARITO: 01-a) 02-c) 03-b) 04-d) 05-d) 06-d)
07-c) 08-c) 09-15 10-b) 11-b) 12-d) 13-e)
14-289/480